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a b s t r a c t

This paper presents a mechanism by which mountain ranges can form curved range-fronts. Gravita-

tional spreading of mountain ranges that have been thrust onto rigid lowlands will result in the

formation of curvature, provided that enough gravity-driven flow occurs to dominate the shape of the

topography. Whether this mechanism can operate during the lifetime of a given mountain range

of the elevation of the range. The curvature of the southern edge of the Tibetan Plateau is consistent

with formation by gravitational spreading provided that the viscosity is similar to that previously

estimated using other, independent, methods. The low elevation and young age of the Zagros

mountains mean that large-scale curvature has not had time to develop. The short along-strike extent

and possibly low viscosity of the Sulaiman Ranges in Pakistan may have allowed the ranges to form

their distinctive arcuate shape. The formation of range-front curvature plays an important role in

controlling the tectonic evolution of the interiors of the ranges, with arc-parallel extension becoming

progressively more important as range-front curvature develops.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

The study and interpretation of plan-view curvature in moun-
tain ranges has a long history (e.g. Suess, 1909; Argand, 1924;
Carey, 1955). This topic is central to our understanding of the
evolution of topography and deformation within the continents,
and therefore is important in studies of continental rheology,
tectonics, and the interpretation of the geological record of
mountain building (e.g. Platt et al., 1989; Hindle and Burkhard,
1999). A variety of mechanisms have been proposed for generat-
ing curvature in mountain ranges (also known as the formation of
‘oroclines’), as summarised in Marshak (2004). The majority of
previous suggestions have appealed to along-strike changes in
foreland basins (e.g. lateral variations in sediment thickness), in
thrust belt decollement properties, or in the geometry or motion
of crustal blocks bounding mountain ranges. This paper presents
an alternative method by which mountain ranges can form
curved range-fronts: by the gravitational spreading of the mate-
rial forming the range. This mechanism can be expected to be
important whenever the crustal thickness and viscosity of a
mountain range allow significant gravity-driven flow to occur
(as quantified below). Previous studies have also suggested that
gravitational driving forces may play a role in the development of
mountain range curvature (e.g. Merle, 1989; Platt et al., 1989),
and the main aim of this paper is to construct a numerical model
All rights reserved.
that allows the timescales involved, and the factors that control the
behaviour, to be quantified. Gravitational spreading is not suggested
as a replacement for the earlier views on the formation of mountain
range curvature, but as an alternative, which it is argued below is
more consistent with observations of some mountain ranges.
2. Dynamic models of mountain ranges

A variety of dynamic models have previously been published
that describe the evolution of mountain ranges. One popular class
of models is based on the ‘thin-viscous-sheet’ formulation of
England and McKenzie (1982), which has been widely applied
(e.g. England and Houseman, 1986; Hsui et al., 1990; Flesch et al.,
2001; Jimenez-Munt et al., 2005). This model assumes that there
are negligible shear-stresses exerted on the base of the flowing
layer, which is likely to be the case in the interiors of some
mountain ranges. However, the margins of many mountain
ranges worldwide are characterised by the underthrusting of
relatively strong material beneath the ranges (e.g. peninsular
India beneath the southern Tibetan Plateau, e.g. Nabelek et al.,
2009; the Brazilian Shield beneath the eastern margin of the
central Andes, e.g. Lamb and Hoke, 1997; and Arabia beneath the
Zagros mountains of southwest Iran, e.g. Nissen et al., 2011). In
such a situation, if the underthrusting plate retains its strength
where it underlies the mountain range (e.g. Copley et al., 2011), it
will provide a rigid lower boundary to the deformation in the
overlying crust. In this situation, significant shear-stresses on
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horizontal planes are transmitted between the underthrusting
plate and the overlying mountain range. Therefore, in regions of
large-scale underthrusting of rigid material, the solutions of ‘thin-
viscous-sheet’ calculations are not applicable. Because this paper
is concerned with the generation of curvature at the range-fronts
of mountain ranges, where such underthrusting is common, a
model will be used which differs from the ‘thin-viscous-sheet’
model by considering shear-stresses on horizontal planes.

A variety of other models of mountain range evolution have been
constructed in cross-section, using a range of different rheologies
and boundary conditions (e.g. Zhao and Morgan, 1987; Clark and
Royden, 2000; Beaumont et al., 2004; Bendick et al., 2008). However,
in order to quantify the rates and characteristics of range-front
curvature, it is necessary to construct models of mountain ranges
that include both horizontal dimensions. This paper will therefore
describe a model that includes these dimensions, and allows the
timescales relating to the formation of range-front curvature to be
quantified.

In order to allow dynamic models to be constructed, and to keep
the models simple enough to allow expressions to be obtained for
the quantities of interest, the model described below follows many
previous authors in assuming a fluid rheology (e.g. England and
McKenzie, 1982; Houseman and England, 1986; Flesch et al., 2001).
Such models are clearly unable to reproduce detailed features of the
surface deformation on the scale of individual faults in the upper
crust. However, considerable progress has been made by construct-
ing fluid dynamical models to study the large-scale deformation in
regions where ductile deformation beneath the brittle upper crust is
important, or where pressure-solution creep in thick piles of sedi-
ment accommodates the deformation, and for these reasons a fluid
rheology is used here. A constant viscosity has been used throughout,
which means that the viscosities discussed below should be con-
sidered as a representation of the bulk properties of the mountain
ranges.
Fig. 1. Plan view of the model setup.
3. Mountain ranges viewed as gravity currents

In order to study regions where large-scale underthrusting of
rigid material is observed on the margins of mountain ranges (e.g.
Nabelek et al., 2009; Lamb and Hoke, 1997; Nissen et al., 2011), a
model has been constructed in which a mountain range has a rigid
lower boundary (which represents the underthrust rigid crust of the
bounding plate). The difference in gravitational potential energy
between mountains and lowlands means that the mountains will
deform to reduce their potential energy, which results in lateral
spreading above this rigid lower boundary. Lateral motion in
response to gravitational driving forces is termed a ‘gravity current’,
and the phenomenon of gravity currents propagating over rigid
lower boundaries has been extensively documented in the fluid
dynamics literature (e.g. Huppert, 1982). Recent work has suggested
that the present-day tectonics of southern Tibet can be viewed as a
gravity current spreading over the rigid underthrust Indian lower
crust (e.g. Copley and McKenzie, 2007; Copley et al., 2011). Such a
model can reproduce the observed rates of motion and sense of
strain in the region. This paper investigates the implications of such
behaviour for the evolution through time of mountain ranges.

The theoretical basis for the propagation of gravity currents
over a rigid base was detailed by Huppert (1982). If an irregularly
shaped pile of fluid is placed upon a rigid base and allowed to flow
(e.g. honey on a glass plate), it will eventually assume an axi-
symmetric shape. When applied to the situation of a mountain
range propagating over a rigid underthrust plate, this result implies
that mountain ranges will eventually form curved range-fronts.
Whether this actually occurs in nature will depend upon two
factors. Firstly, arguments based on a mountain range acting as a
gravity current will only apply if the gravitational driving forces are
the most important forces acting on the belt. Other forces, such as
those relating to lateral variations in decollement properties or in
the motions of the crustal blocks bounding a range, could con-
ceivably overwhelm the effects of gravity-driven flow, implying
that not all curved mountain range-fronts may result from grav-
itational spreading (e.g. Marshak, 2004). Secondly, the thickness
and viscosity of the crust overlying the rigid underthrust litho-
sphere will determine whether flow can occur rapidly enough for
the edge of a range to become appreciably curved during the
lifetime of the mountain belt. To address this point, this paper
describes numerical calculations that have been performed which
allow the timings of curve formation, on the scale of the entire
lengths of mountain ranges, to be estimated as a function of the
geometry and material properties of the ranges. It should be noted
that this paper discusses the formation of curved range-fronts in
mountain ranges that are initially linear, and does not consider the
reasons why some ranges may form with a curved geometry, or
discuss locations in which initially curved ranges have developed
even greater degrees of curvature (e.g. Barke et al., 2007).
4. Model of curvature formation

4.1. Model setup

This section describes a numerical model that allows the factors
controlling the rate of curve formation on the edges of mountain
ranges to be quantified. The model setup is shown in Fig. 1. A
mountain range with an initial along-strike length of l is emplaced in
one corner of the model domain. The x¼0 model boundary acts as a
plane of reflection, so the model represents half of a mountain range
of length 2l. The across-strike width of the initial topography is
small compared with the along-strike length. Provided this is the
case, the initial across-strike width has a negligible effect on the
model behaviour. Likewise, the details of the shape of the topo-
graphic taper at the end of the range are unimportant.

The topography on the y¼0 boundary in Fig. 1 is kept at the
initial value within the range 0oxo l. This situation is equivalent
to there being a reservoir of crustal material within the interior of
a mountain range, beyond the extent of rigid underthrusting, that
can flow onto the underthrusting plate (e.g. crust from north Tibet
flowing into southern Tibet and over-riding the underthrust
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Indian plate, or material from the central Andes over-riding the
underthrust Brazilian shield and moving into the sub-Andes). This
reservoir of material is, in effect, the high topography that is
created by shortening infront of the underthrusting plate as it
plunges beneath the mountains. There is, in general, no step in
topography observed in mountain ranges above the nose of the
underthrusting plate (e.g. in central Tibet or the central Andes),
indicating that this reservoir of crustal material exists in nature
and can therefore be sensibly incorporated into the model. For a
given driving force and viscosity, the velocities in a flow will
depend upon the distance to the nearest rigid boundary (e.g. an
underthrusting plate or the lowlands bordering a mountain
range) (e.g. Copley, 2008). The thickness of the lithosphere is
much less than the lateral extents of large mountain ranges.
Therefore, flow over an underthrusting plate is expected to be
slower than the rate at which it is possible to add material to the
margin by flow over a stress-free base in the interior of the range,
beyond the limit of underthrusting. In this situation, the reservoir
of crustal material in the range interior will be able to sustain the
spreading of the margin.

In the model, the topography behaves as a gravity current, and
propagates across the model domain. Rigid boundary conditions
(where no topography is allowed to form) are imposed at high
values of x and y, but these are placed far enough from the initial
topography that the model mountain ranges do not reach them
during the course of the calculations, and they have no effect
upon the model results.

Huppert (1982) showed that where the lateral extent of a
gravity current over-riding a rigid base (where the horizontal
velocity is forced to be zero) is large compared with its thickness,
vertical planes deform by simple shear and the motions are
governed by the local topography and the drag from the rigid
lower boundary. This local balance of forces means that velocity
boundary conditions are not required on the lateral edges of the
model domain, and the tectonic forces produced by motions of
the bounding plates are not directly felt by the material overlying
the rigid underthrust plate. In this situation the equations for
Newtonian fluid flow in the absence of inertial forces can be
written as

rh¼
Z
rg

@2u

@z2
ð1Þ

where h is the surface elevation, u¼ ðu,vÞ is the horizontal velocity
vector, Z is the viscosity, r is the density, z is the vertical co-ordinate,
and g is the acceleration due to gravity. This equation has been non-
dimensionalised using the length-scale H, which is the height of the
topography held constant at y¼0 and 0oxo l (Fig. 1). Lacking a
natural choice for a velocity to use in the non-dimensionalisation, the
velocity term has been non-dimensionalised using Z=rH, which has
units of m/s. The isostatic compensation of mountain ranges needs to
be taken into account. Following McKenzie et al. (2000), g is replaced
with the expression gðf þ1Þ2, where f is given by r1= ðr2�r1Þ, and
r1 and r2 are the densities of the flowing layer and substrate,
respectively. The model can then be constructed with a horizontal
base, but the added factor of ðf þ1Þ2 will simulate the presence of an
isostatically compensated root beneath the model topography.
Specifically, the surface velocity and the component of the volume
flux that contributes to changes in surface elevation (rather than the
deepening of the crustal root), are the same as in calculations where
the root is directly modelled. The non-dimensionalised equation is
then given by

r0h0 ¼
Z2

H3r2gðf þ1Þ2
@2u0

@z02
ð2Þ

where primes denote non-dimensionalised quantities. This equation
is solved using the method of Huppert (1982) to give the profile of
velocity with depth at each point on a numerical grid. The evolution
of topography at each time-step is then calculated by re-writing the
incompressibility condition as a diffusion equation (e.g. Pattyn, 2003),
which is solved using the finite difference method. The x¼0 model
boundary is treated as a plane of reflection when performing these
calculations, as is the y¼0 boundary at x4 l. Material effectively
flows into the model across the y¼0 boundary at 0oxo l, in order to
keep the range at a constant elevation along this segment of the
boundary.

A useful property of a low-Reynolds-number gravity current
propagating over rigid base, as studied here, is that the rate of
advance of the current is limited by the rate at which material from
the interior of the current can flow to the nose, and not by the
conditions at the nose itself (Huppert, 1982). This property means
that the absence in the model of thrust faults at the nose of the range
does not invalidate the results regarding the rate at which the range
propagates, which will be determined by the conditions in the ductile
interior of the range, where it flows over the underlying rigid plate.

In the model setup described here, there are only two para-
meters that can be varied: l, the half-length of the mountain range
at the time of initial overthrusting (which is non-dimensionalised
as L¼ l=H), and the factor Z2=H3r2gðf þ1Þ2 from Eq. (2), which is
hereafter referred to as a.

The model used here differs from that of Hsui et al. (1990),
who also studied curve formation by gravitationally driven fluid
flow. Hsui et al. (1990) used the ‘thin-viscous-sheet’ formulation,
whereas this paper describes a model applicable to flow over a
rigid underthrust plate (Section 2). Additionally, Hsui et al. (1990)
‘pinned’ the topography at the along-strike ends of the mountain
ranges, in order to develop curved topography. The model pre-
sented here allows the topography at the ends of the range to
evolve as it does elsewhere in the model domain.

4.2. Model results

Fig. 2 shows the evolution through time of one of the model
mountain ranges. The mountain range progressively over-rides the
lowlands, behaving as a gravity current. The plan-view curvature of
the range progressively develops through time. The radius of curva-
ture of a given contour never becomes exactly the same all the way
along the range, because the act of holding part of the y¼0 axis at a
constant elevation introduces an asymmetry into the behaviour. The
model topography shows the steep topographic front and gently
sloping top characteristic of a gravity current propagating over a rigid
base, which Copley and McKenzie (2007) suggested explained the
large-scale topography of southern Tibet. The rate of propagation of
the range in Fig. 2 decreases through time. This decrease is due to the
rate of mass flux into the model domain, through the y¼0 boundary
at 0oxo l. This mass flux depends upon the surface slope at y¼0,
which gradually decreases as the current propagates (Fig. 2). This
gradually decreasing mass influx is then spread over a progressively
larger area as the current advances, because of geometrical spreading.
In a situation where the mass influx were held constant, or the lateral
extent of mass influx (l) were increased through time, the rate of
propagation of the range-front would be more constant. Tectonic
models suggest that, in order to re-create the strain observed at the
present-day, there is a compressive force transmitted from northern
Tibet to southern Tibet through the upper crust (Copley et al., 2011).
Such a force is not present in the models presented here, and would
increase the rate of mass influx. In order to maintain the simplicity of
the models, forces of this nature have not been considered further,
but it should be noted that this means the viscosities presented
below, and the timescales required to attain curvature, should be
taken as lower and upper bounds, respectively.

Models equivalent to Fig. 2 have been run for a range of values
of a and the initial mountain belt half-length (l). It is then possible
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Fig. 2. (a) Plan view of the evolution through time of a range where a¼ 1� 1019,
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A. Copley / Earth and Planetary Science Letters 351-352 (2012) 208–214 211
to quantitatively investigate the time taken to reach a situation in
which the radius of curvature varies by less than a given factor
between the different parts of the range. It is found from the
numerical experiments that this time is given by T ¼ baL2 in non-
dimensionalised variables, which is

t¼
bZl2

h3rgðf þ1Þ2
ð3Þ

in the dimensional equivalents. b is a constant, the value of which
depends upon the degree of curvature of interest. If the radius of
curvature of the section of mountain range at 0oxo l is compared
with the radius of curvature of the range at x4 l, then b is 4.6 if the
calculated time represents when the two radii differ by less than a
factor of 4. If this factor of 4 is replaced by factors of 2, 1.5, and 1.3,
then b takes the values of 11.0, 21.9, and 33.3, respectively.

When applying Eq. (3) to mountain ranges, it should be noted
that it is not immediately clear what value should be used for l,
the initial along-strike half-length of the range. In the model, l

represents the along-strike half-length of the initial overthrusting
onto the rigid lowlands. The model mountain range then grows
along-strike, as well as across-strike. Viewing a range at the present-
day, it is difficult to know what geometry the initial overthrusting
had, so caution should be used when deciding upon the value of l

when using Eq. (3).
4.3. Lateral variability

The model described above simulated a mountain belt with no
lateral variations in material properties. However, it is worth
considering the effects that along-strike variability in rheology
may have, as these variations may be found in the natural world.
Numerical experiments have been performed in which the initial
input topography is the same along the entire length of the y¼0
axis, and only depends upon the y co-ordinate (i.e. is the same as
in the range 0oxo l in Fig. 1). The boundary condition on the
right-hand model boundary has then been modelled in the same
manner as the x¼0 boundary, as a reflective boundary condition.
In this situation, the topography propagates parallel to the y-axis,
there is no along-strike variability, and curvature does not form.
In a modification of this model, the value of the parameter a has
been reduced in the domain 0oxo l, and in material which flows
out of this region, in order to simulate the presence of along-
strike changes in rheology. In the situation where the contrast in
a is large, the motion of material that originates in the region x4 l

is small compared with that originating at 0oxo l, and the results
are similar to those presented above. As the lateral contrast in a
becomes smaller, the material originating at x4 l propagates parallel
to the y-axis, and the lateral extent of the curved part of the range
decreases.

4.4. Interaction with other mountain ranges

In some areas, such as the eastern and western ends of the
Himalaya, mountain ranges come into contact with other ranges
that have different strikes and are propagating in different directions
(such as the junction between the eastern Himalayas and the Indo-
Burman Ranges at the East Himalayan Syntaxis; Fig. 3a). It is
therefore worth considering what effect such interactions will have
on the model results. Fig. 4 shows the results of a calculation
identical to the original model described above, except for the
addition of a second mountain range which begins at the right-
hand edge of the model domain in Fig. 1 and propagates leftwards,
parallel to the x-axis. Fig. 4 shows the positions of the range-fronts
of the mountain ranges, before and after they come into contact, as
solid black lines. The model results from equivalent times in the
original model are shown as grey dashed lines. The behaviour of a
gravity current propagating over a rigid base is dominated by the
balance of local stresses, related to topography and the drag from
the rigid base. The interaction of the along-strike end of a mountain
range with a neighbouring range therefore does little to affect the
behaviour of the central part of the range, as is demonstrated by
Fig. 4. It is therefore possible to apply the model results described
above to mountain ranges that are now in contact with neighbour-
ing belts. Furthermore, the behaviour shown in Fig. 4 provides an
explanation for the formation of syntaxes between mountain ranges,
as previously suggested by Copley and McKenzie (2007) for the
Eastern Himalayan Syntaxis.
5. Comparison with observations

Having estimated the timescales required for mountain belts
to attain curved range-fronts by gravitational spreading, this
section compares the estimated timescales to observations from
some mountain ranges.

5.1. A large and curved mountain range: the Tibetan Plateau

The southern margin of the Tibetan plateau is curved (Fig. 3a),
and geological reconstructions and rotations measured using
palaeomagnetism (as collated in van Hinsbergen et al., 2011)
show that this curve has formed since the onset of mountain
building in the region. Lateral changes in the curvature of the
range do not correspond to variations in sediment thickness in
the foreland basin, the arc-normal surface motion measured using
GPS is roughly constant along the length of the range (e.g.
Banerjee et al., 2008), and there are no clear along-strike differ-
ences in the seismicity of the range-front. Lateral changes in basin
or decollement properties therefore do not explain the curvature
of the southern margin of Tibet, which is instead likely to be due
to the gravitational spreading of Tibet over the rigid Indian crust
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(which also explains the present-day tectonics of the region, e.g.
Copley et al., 2011).

The time elapsed since continent–continent collision, and the
degree of curvature observed, can be used to estimate the viscosity of
the mountain range. The current continent–continent collision is
thought to have begun at � 50 Ma (e.g. Dupont-Nivet et al., 2010;
Copley et al., 2010, and references therein), which is likely to
represent the initial age of overthrusting onto the Indian plate. West
of � 901E longitude, the southern margin of the Tibetan Plateau
forms a curve with a roughly constant radius of curvature (Bendick
and Bilham, 2001). East of � 901, the radius of curvature is � 4 times
lower. Using Eq. (3), if the along-strike half-length of initial over-
thrusting is taken to be between 500 and 1000 km, we can estimate
the viscosity to be between 3�1020 and 8�1019 Pa s, respectively
(assuming that f¼7, (Copley and McKenzie, 2007), h¼5 km, and
r¼ 2800 kg=m3). This value is consistent with viscosity estimates
based upon the present-day tectonics of southern Tibet (1020 Pa s;
Copley and McKenzie, 2007), confirming that gravitational spreading
is a viable mechanism for the formation of curvature on this margin
of the Tibetan Plateau.

5.2. A large and straight mountain range: the Zagros Mountains

In contrast to southern Tibet, the majority of the length of the
Zagros mountains shows little curvature (Fig. 3b). West of � 521E
longitude, the mountain range is approximately linear, and the
minor deviations such as the Dezful Embayment and Lurestan Arc
(D and L in Fig. 3b) have an across-strike amplitude that is small
compared with the along-strike length of the range. East of this,
the range curves towards its termination in the region of the Fars
Arc (F in Fig. 3b). This shape, with a mostly straight range-front
and a curve at the end of the range, is as expected at times early in
the process of curve formation (Fig. 2).

Estimates for the age of continent–continent collision in Iran vary
between 10 and 35 Ma (e.g. McQuarrie et al., 2003; Allen and



Fig. 5. Cartoon to illustrate the evolution of deformation as mountain-front

curvature develops.
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Armstrong, 2008). If the along-strike half-length of the range is
taken to be 800 km, the viscosity of the range would have to be the
improbably low value of 3.7�1018–1.3�1019 Pa s in order for
significant curvature to have formed along the length of the range
since collision began (assuming h¼2.5 km, f¼8, r¼ 2800 kg=m3).
This lack of curvature results from both the relative youth of the
range compared with Tibet, and also the lower topography (Eq. (3)).

5.3. A small and curved mountain range: the Sulaiman Ranges

The above analysis of the Tibetan Plateau suggested that
mountain ranges with a large crustal thickness can form curved
range-fronts within the typical lifespans of orogenic belts. It is
possible that ranges with lower crustal thicknesses can also form
curved range-fronts by gravitational spreading, but would require
considerably more time, a lower viscosity, or a shorter along-
strike length in order to achieve the same degree of curvature (Eq.
(3)). A possible example of a curved mountain range-front that
has formed because of both a low viscosity and a small along-
strike length is the Sulaiman Ranges in Pakistan (Fig. 3c).

Macedo and Marshak (1999) previously suggested that the
arcuate shape of the range may have formed because of propagation
into a foreland basin of variable depth. An alternative mechanism is
that the short length and potential low viscosity of the ranges (due to
being composed of a thick pile of sediments, rather than crystalline
basement, e.g. Banks and Warbutron, 1986) may have allowed
gravitational spreading of the topography into an arcuate shape.
The radial directions of slip-vectors in thrust-faulting earthquakes on
the margins of the range (Bernard et al., 2000) lend support to this
hypothesis, because such behaviour is expected if gravitational
spreading is occurring. Such a mechanism requires that the Sulaiman
Ranges are weaker than the adjacent mountains on the margin of the
Indian Plate to the north and south, otherwise the entire mountain
range-front would advance in line and no curve would form (Section
4.3). Eq. (3) suggests that the curvature of the Sulaiman Ranges could
form since India collided with Asia if the viscosity of the range were
� 1020 Pa s. Unfortunately, the lack of information regarding the
present-day surface velocities in the region prevents a comparison
between this viscosity estimate and one calculated to be consistent
with the present-day tectonics. However, the Indo-Burman ranges
overthrust the eastern margin of the Indian plate (IBR in Fig. 3a), and
have a similar lithology and elevation to the Sulaiman Ranges, and in
this region Copley and McKenzie (2007) estimated the viscosity to be
1019–1020 Pa s; comparable to that required to explain the curvature
of the Sulaiman Ranges.

With the information presently available to us we cannot
conclusively state whether gravitational spreading or lateral
variations in foreland basin properties (Macedo and Marshak,
1999) better explain the formation of curvature in the Sulaiman
Ranges. It is possible that both may be simultaneously operating,
by gravitational spreading into a basin of variable depth. How-
ever, the gravitational spreading hypothesis is viable, and demon-
strates the principle that small mountain ranges with low viscosities
could conceivably develop range-front curvature by the same
mechanism as large ranges.
6. Discussion

The numerical models presented above demonstrate that a
mountain range that is emplaced upon strong crust will form a
curved margin provided that enough gravity-driven flow can occur
in order to dominate the shape of the topography. The time taken
for a given amount of curvature to be attained depends upon the
viscosity of the range, the along-strike length of the initial topo-
graphy, and the height of the range. Curvature can therefore be
expected to form within the duration of an orogenic event if the
mountain range concerned is high, because of both the importance
of this parameter itself, and also because larger amounts of crustal
thickening will eventually result in lower viscosities because of
hotter geotherms through internal radiogenic heating (e.g. McKenzie
and Priestley, 2008). Alternatively, ranges with low along-strike
lengths or low viscosities may also be expected to form curved
range-fronts.

The formation of mountain-front curvature has implications
for the strain within the interiors of mountain ranges. In situa-
tions where gravity-driven flow plays a significant role in con-
trolling the tectonic motions, and the edge of the range is curved,
extensional stresses parallel to the overall strike of the mountain
belt will be generated within the range (such as in southern Tibet,
e.g. Armijo et al., 1986; Copley et al., 2011). These stresses will
increase in magnitude as the degree of curvature of the range-
front increases. The tectonics of the interiors of mountain ranges
will therefore depend upon the processes which generate range-
front curvature, with extensional stresses becoming increasingly
important as range-front curvature increases. The onset of east–
west extension in Tibet at times significantly after the date of
continent–continent collision (at � 20 Ma, e.g. Mitsuishi et al.,
2012, and references therein), may record the time-delay required
for significant range-front curvature to develop (Fig. 5).

The formation of mountain front curvature by gravitational
spreading may be visible in the geological record. Transport direc-
tions would appear to fan outwards from the centre of the range, and
be perpendicular to the local strike of the range-front. If the time
evolution of deformation is known, the fanning out of the transport
directions would be expected to increase through time as the curve
at the range-front evolves. The divergence of transport directions
would begin at the lateral end of the mountain range, and then
propagate towards the centre of the range. In addition, arc-parallel
extension would begin within the range interior at times coincident
with the appearance of divergent transport directions (Fig. 5).
7. Conclusions

This paper has described a mechanism by which mountain
ranges can form curved range-fronts by gravitational spreading.
Whether this mechanism can operate during the lifetime of a
mountain range depends upon the viscosity and range geometry
(the square of the along-strike length of the range and the cube of
the elevation of the range). Gravitational spreading is consistent
with the formation of the curved southern margin of the Tibetan
Plateau and the arcuate Sulaiman Ranges, and with the lack of
large-scale curvature in the Zagros mountains. The development
of range-front curvature has an important role to play in control-
ling the tectonic evolution of the interiors of mountain ranges.
Acknowledgements

The author is supported by a research fellowship at Pembroke
College in the University of Cambridge, thanks James Jackson and



A. Copley / Earth and Planetary Science Letters 351-352 (2012) 208–214214
Dan McKenzie for useful discussions, and thanks Arlo Weil, one
anonymous reviewer, and the Editor for comments on the
manuscript.

References

Allen, M.B., Armstrong, H.A., 2008. Arabia–Eurasia collision and the forcing of mid-
Cenozoic global cooling. Palaeogeogr. Palaeoclimatol. Palaeoecol. 265, 52–58.

Argand, E., 1924. La Tectonique de l’Asie. Hafner Press, New York. (Translated by
A.V. Carozzi (1977)).

Armijo, R., Tapponnier, P., Mercier, J., Han, Tonglin, 1986. Quaternary extension in
southern Tibet: field observations and tectonic implications. J. Geophys. Res.
91, 13803–13872.

Banerjee, P., Burgmann, R., Nagarajan, B., Apel, E., 2008. Intraplate deformation of
the Indian subcontinent. Geophys. Res. Lett. 35 , http://dx.doi.org/10.1029/
2008GL035468.

Banks, C.J., Warbutron, J., 1986. ‘Passive-roof’ duplex geometry in the frontal
structures of the Kirthar and Sulaiman mountain belts Pakistan. J. Struct. Geol.
8, 229–237.

Barke, R., Lamb, S., MacNiocaill, C., 2007. Late Cenozoic bending of the Bolivian
Andes: new paleomagnetic and kinematic constraints. J. Geophys. Res. 112 , ht
tp://dx.doi.org/10.1029/2006JB004372.

Beaumont, C., Jamieson, R.A., Nguyen, M.H., Medvedev, S., 2004. Crustal channel
flows. 1. Numerical models with applications to the tectonics of the Hima-
layan–Tibetan orogen. J. Geophys. Res. 109 , http://dx.doi.org/10.1029/2003
JB002809.

Bendick, R., Bilham, R., 2001. How perfect is the Himalayan arc? Geology 29,
791–794.

Bendick, R., McKenzie, D., Etienne, J., 2008. Topography associated with crustal
flow in continental collisions, with application to Tibet. Geophys. J. Int. 175,
375–385.

Bernard, M., Shen-Tu, B., Holt, W.E., Davis, D.M., 2000. Kinematics of active
deformation in the Sulaiman Lobe and Range, Pakistan. J. Geophys. Res. 105,
13253–13279.

Carey, S., 1955. The orocline concept in geotectonics. Proc. R. Soc. Tasmania 89,
255–288.

Clark, M.K., Royden, L.H., 2000. Topographic ooze: building the eastern margin of
Tibet by lower crustal flow. Geology 28, 703–706.

Copley, A., 2008. Kinematics and dynamics of the southeastern margin of the
Tibetan Plateau. Geophys. J. Int. 174, 1081–1100.

Copley, A., McKenzie, D., 2007. Models of crustal flow in the India–Asia collision
zone. Geophys. J. Int. 169, 683–698.

Copley, A., Avouac, J.-P., Royer, J.-Y., 2010. The India-Asia collision and the
Cenozoic slowdown of the Indian plate: implications for the forces driving
plate motions. J. Geophys. Res. 115, http://dxdoi.org/10.1029/2009JB006634.

Copley, A., Avouac, J.-P., Wernicke, B.P., 2011. Evidence for mechanical coupling
and strong Indian lower crust beneath southern Tibet. Nature 472, 79–81.

Dupont-Nivet, G., Lippert, P.C., van Hinsbergen, D.J.J., Meijers, M.J.M., Kapp, P.,
2010. Palaeolatitude and age of the Indo-Asia collision: palaeomagnetic
constraints. Geophys. J. Int. 182, 1189–1198.

England, P., Houseman, G., 1986. Finite strain calculations of continental deforma-
tion. 2. Comparison with the India–Asia collision zone. J. Geophys. Res. 91,
3664–3676.
England, P., McKenzie, D., 1982. A thin viscous sheet model for continental
deformation. Geophys. J. R. Astron. Soc. 70, 295–321.

Flesch, L.M., Haines, A.J., Holt, W.E., 2001. Dynamics of the India–Eurasia collision
zone. J. Geophys. Res. 106, 16435–16460.

Hindle, D., Burkhard, M., 1999. Strain, displacement and rotation associated with
the formation of curvature in fold belts: the example of the Jura arc. J. Struct.
Geol. 21, 1089–1101.

Houseman, G., England, P., 1986. Finite strain calculations of continental deforma-
tion. 1. Method and general results for convergent zones. J. Geophys. Res. 91,
3651–3663.

Hsui, A.T., Scott Wilkerson, M., Marshak, Stephen, 1990. Topographically driven
crustal flow and its implication to the development of pinned oroclines.
Geophys. Res. Lett. 17, 2421–2424.

Huppert, H.E., 1982. The propagation of two-dimensional and axisymmetric
gravity currents over a rigid horizontal surface. J. Fluid Mech. 121, 43–58.

Jimenez-Munt, I., Garcia-Castellanos, D., Fernandez, M., 2005. Thin-sheet model-
ling of lithospheric deformation and surface mass transport. Tectonophysics
407, 239–255.

Lamb, S., Hoke, L., 1997. Origin of the high plateau in the central Andes, Bolivia,
South America. Tectonics 16, 623–649.

Macedo, J., Marshak, S., 1999. Controls on the geometry of fold-thrust belt salients.
GSA Bull. 111, 1808–1822.

Marshak, S., 2004. Salients, recesses, arcs, oroclines, and syntaxes—a review of
ideas concerning the formation of map-view curves in fold-thrust belts. AAPG
Memoir 82, 131–156.

McKenzie, D., Priestley, K., 2008. The influence of lithospheric thickness variations
on continental evolution. Lithos 102, 1–11.

McKenzie, D., Nimmo, F., Jackson, J., Gans, P.B., Miller, E.L., 2000. Characteristics
and consequences of flow in the lower crust. J. Geophys. Res. 105, 11029–11046.

McQuarrie, N., Stock, J.M., Verdel, C., Wernicke, B.P., 2003. Cenozoic evolution of
Neotethys and implications for the causes of plate motions. Geophys. Res. Lett.
30, 2036, http://dx.doi.org/10.1029/2003GL017992.

Merle, O., 1989. Strain models within spreading nappes. Tectonophysics 165,
57–71.

Mitsuishi, M., Wallis, S.R., Aoya, M., Lee, J., Wang, Y., 2012. E–W extension at 19 Ma
in the Kung Co area, S. Tibet: evidence for contemporaneous E–W extension
and N–S extension in the Himalayan orogen. Earth Planet. Sci. Lett. 325–326,
10–20.

Nabelek, G., Hetenyi, J., Vergne, J., Sapkota, S., Kafle, B., Jiang, M., Su, H., Chen, J.,
Huang, B.-S., 2009. The Hi-CLIMB Team, 2009. Underplating in the Himalaya–
Tibet collision zone revealed by the Hi-CLIMB experiment. Science 325,
1371–1374.

Nissen, E., Tatar, M., Jackson, J.A., Allen, M.B., 2011. New views on earthquake faulting
in the Zagros fold-and-thrust belt of Iran. Geophys. J. Int. 186, 928–944.

Pattyn, F., 2003. A new three-dimensional higher-order thermomechanical ice sheet
model: basic sensitivity, ice stream development, and flow across subglacial
lakes. J. Geophys. Res. 108, http://dxdoi.org/10.1029/2002JB002329.

Platt, J.P., Behrmann, J.H., Cunningham, P.C., Dewey, J.F., Helman, M., Parish, M.,
Shepley, M.G., Wallis, S., Weston, P.J., 1989. Kinematics of the alpine arc and
the motion history of Adria. Nature 337, 158–161.

Suess, E., 1909. The Face of the Earth. Clarendon, Oxford.
van Hinsbergen, D.J.J., Kapp, P., Dupont-Nivet, G., Lippert, P.C., DeCelles, P.G.,

Torsvik, T.H., 2011. Restoration of Cenozoic deformation in Asia and the size of
Greater India. 30, http://dx.doi.org/10.1029/2011TC002908.

Zhao, W.-L., Morgan, W.J., 1987. Injection of Indian crust into Tibetan lower crust:
a two-dimensional finite element model study. Tectonics 6, 489–504.

dx.doi.org/10.1029/2008GL035468
dx.doi.org/10.1029/2008GL035468
dx.doi.org/10.1029/2008GL035468
dx.doi.org/10.1029/2008GL035468
dx.doi.org/10.1029/2006JB004372
dx.doi.org/10.1029/2006JB004372
dx.doi.org/10.1029/2006JB004372
dx.doi.org/10.1029/2006JB004372
dx.doi.org/10.1029/2003JB002809
dx.doi.org/10.1029/2003JB002809
dx.doi.org/10.1029/2003JB002809
dx.doi.org/10.1029/2003JB002809
dx.doi.org/10.1029/2009JB006634
dx.doi.org/10.1029/2009JB006634
dx.doi.org/10.1029/2009JB006634
dx.doi.org/10.1029/2003GL017992
dx.doi.org/10.1029/2003GL017992
dx.doi.org/10.1029/2003GL017992
dx.doi.org/10.1029/2002JB002329
dx.doi.org/10.1029/2002JB002329
dx.doi.org/10.1029/2002JB002329
dx.doi.org/10.1029/2011TC002908

	The formation of mountain range curvature by gravitational spreading
	Introduction
	Dynamic models of mountain ranges
	Mountain ranges viewed as gravity currents
	Model of curvature formation
	Model setup
	Model results
	Lateral variability
	Interaction with other mountain ranges

	Comparison with observations
	A large and curved mountain range: the Tibetan Plateau
	A large and straight mountain range: the Zagros Mountains
	A small and curved mountain range: the Sulaiman Ranges

	Discussion
	Conclusions
	Acknowledgements
	References




