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ABSTRACT

The thickness of the cratonic lithospheric mantle (CLM) influences the composition of
primary mantle melts, the formation and distribution of ore deposits, and the stability of
continents. However, it remains debated whether the thickness of the CLM has changed
through time. Some studies suggest progressive thinning due to extension, convective removal,
mantle plumes, or subduction-driven erosion, while others propose long-term stability due
to the intrinsic buoyancy or strength of the CLM. To address this question, we provide new
constraints on the evolution of the CLM through time by comparing two recently developed
datasets: (1) a global dataset of paleo-lithosphere-asthenosphere boundary (LAB) depth
estimates (dating back to 2.1 Ga) produced by fitting geotherms to xenolith- and xenocryst-
derived pressure and temperature estimates; and (2) the present-day LAB depth derived
from seismic tomography combined with a scaling between wavespeed and temperature. Our
results show that the thickness of the CLM beneath most cratons has changed by <50 km
since the Paleoproterozoic, that there are no systematic secular trends in CLM thickness
changes through time, and that there is no evidence for the previously proposed existence of
substantially thicker (>300 km) CLM in the past. These findings suggest that in the major-
ity of places, the cratonic lithosphere has remained largely unchanged for billions of years,
reinforcing the idea that cratonic roots represent long-lived, stable features of Earth’s litho-
sphere. Exceptions are regions with long histories in a supra-subduction setting, followed by
the application of extensional stresses (e.g., North China).

INTRODUCTION
Cratons are stable blocks of Precambrian

sion (Bedle et al., 2021; Hua et al., 2025). Cra-
tons thought to have been modified by these

continental lithosphere that have remained tec-
tonically stable for billions of years. The cra-
tonic lithospheric mantle (CLM) in most cra-
tons experienced high-degree partial melting
followed by thickening during the Proterozoic
or Archean (Pearson et al., 2021). The roots of
cratons are generally thought to be long-lived
due to a combination of their thickness, tem-
perature, and composition, which between them
result in CLM that is buoyant and mechanically
strong (Jordan, 1978). However, some obser-
vations and models have implied that cratons
may be periodically destabilized or destroyed
by convective removal, extension, or basal ero-
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processes include the North China Craton (Liu
etal., 2019; Wu et al., 2019) and the Wyoming
Craton (Carlson et al., 2004; Dave and Li, 2016).
These processes have attracted research interest
due to their roles in driving magmatism (Elkins-
Tanton, 2005), facilitating ore-deposit formation
(Zhu et al., 2017), and offering insights into the
spatio-temporal evolution of CLM. However,
the prevalence and importance of these pro-
cesses remains uncertain, and despite advances
in our understanding of the CLM, key ques-
tions remain regarding the stability of cratonic
roots and the processes, prerequisites, and time
scales involved in their modification. Addressing
these questions is critical for understanding the
dynamic evolution of Earth’s lithosphere and
its implications for tectonics, magmatism, and
resource distribution (Cawood et al., 2022; Hog-
gard et al., 2020; Zhu et al., 2017).

In this study, we combine two recently
developed methodologies to perform a global
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investigation of CLM stability through geo-
logical time. New data and models of kimber-
lite-hosted xenoliths and xenocrysts allow the
ancient thickness of the CLM to be constrained
(Sudholz and Copley, 2025). The combination
of seismic tomographic models with the scal-
ing between temperature and seismic wavespeed
allows the present-day thickness of the CLM to
be mapped (Priestley et al., 2024). In this paper,
we combine these datasets to investigate CLM
thickness evolution on a global scale since the
Paleoproterozoic.

METHOD: LITHOSPHERIC
THICKNESS ESTIMATES

Kimberlites and related rocks contain frag-
ments of the lithospheric mantle (i.e., xenoliths
and xenocrysts) that were entrained during their
rapid ascent to the surface. By applying geo-
thermobarometers and geotherm modeling to
these samples, they can be used to constrain the
temperature and thickness of the CLM at the
time of eruption. In this study, we have used an
expanded version of the database reported in
Sudholz and Copley (2025). The equilibration
pressure and temperature (P-T) of the samples
were calculated using the geothermobarometers
of Nimis and Taylor (2000) and Sudholz et al.
(2021) (which is more accurate at high-P than
the Nimis and Taylor [2000] geobarometer),
after filtering using the method of Ziberna et al.
(2016). Our samples come from ~80 volcanic
pipes from ~15 cratons (Fig. 1). The emplace-
ment ages range from Miocene (ca. 20 Ma) to
Paleoproterozoic (ca. 2100 Ma), although most
samples have ages <500 Ma. To fit geotherms
to these data, and estimate lithosphere-asthe-
nosphere boundary (LAB) depth, we use the
approach of Sudholz and Copley (2025). This
method does not fix the values of poorly known
parameters (e.g., the thickness of the crust and
the distribution of radiogenic heating), but
instead tests all geologically viable parameter
combinations and obtains the full range of geo-
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Figure 1. (A) Map of lithosphere-asthenosphere boundary depth (km) based on CAM2024 (Priestley et al., 2024). Overlain are the locations
of the mantle xenolith and xenocryst samples used in this study. (B) Inset map of Siberian craton. (C) Inset map of southern Africa. Figure

modified after Sudholz and Copley (2025).

therms that are consistent with the data (which
have a resolution in P-T of 35-50 °C and 2.5-4.5
kbar). The range in possible LAB depths was
estimated as the depth range over which the
paleogeotherm(s) that are able to reproduce the
data intersect the mantle adiabat. We express this
range as a mean value and standard deviation.
The adiabat was calculated using a fixed mantle
potential temperature (7,) of 1315 °C (for the
reasons outlined in Sudholz and Copley, 2025).
We discuss below the effects of using alterna-
tive values for 7,. An example paleogeotherm
for the Wajrakarur Kimberlite Field is shown
on Figure 2. We only perform paleogeotherm
modeling for the subset of locations (shown on
Fig. 1), where the samples exhibit a large range
of equilibration pressures, leading to a well-con-
strained paleogeotherms, and with an absence
of the high-temperature scatter that implies re-
equilibration with mantle-derived melts before
eruption (Sudholz and Copley, 2025).
Priestley et al. (2024) created an upper-man-
tle thermal model using a tomographic model
derived from a large surface waveform dataset
(e.g., Priestley et al., 2018) and by applying a
parametrization between S-wave velocity (Vs)

and temperature (7). The tomographic inver-
sion was performed on a 2° x 2° geographic
grid. Priestley et al. (2024) constructed the
parameterization using the relation between Vs,
T, and depth in the oceanic lithosphere (with
the thermal model constrained by the relation
between plate age and bathymetric depth),
and by also incorporating P-T estimates from
continental mantle xenoliths. This approach is
empirical and makes no assumptions about the
physical controls on the relationship between
Vs and T. The temperature estimates from the
seismological results are only reliable near the
base of the lithosphere, beneath the effects of
crustal contamination in the estimated seismic
velocities. When comparing LAB-depth esti-
mates from these models with our xenolith-
derived paleogeotherm, the potential circular
reasoning related to the use of xenoliths in
the calibration is mitigated in two ways. First,
the parameterization of the Vs-T relationship
is primarily based on observations from oce-
anic lithosphere. Second, the continental xeno-
liths used by Priestley et al. (2024) differ sig-
nificantly from those in our study: of our ~80
sample locations, only eight were included in the

calibration of Priestley et al.’s model, and with
the exception of the Zero and Cullinan pipes,
all of their samples were from kimberlites with
Phanerozoic emplacement ages. In contrast, our
dataset includes 14 locations with emplacement
ages exceeding 450 Ma. Additionally, our P-T
estimates were derived using a different set of
geothermobarometers (see above).

To constrain the present-day values for LAB,
we used the variation of T with depth from the
seismological results of Priestley et al. (2024) in
the four locations surrounding our xenolith loca-
tions on the 2° x 2° geographic grid. For consis-
tency with the petrological results, we estimate
the LAB depth using an equivalent methodol-
ogy of fitting multiple possible gradients to the
conductive and convective parts of the temper-
ature-depth profile and examining where those
lines intersect (see item S2 in the Supplemental
Material'). The combination of using seismic

!Supplemental Material. Online dataset and sup-
plementary figures. Please visit https://doi.org/10
.1130/GEOL.S.30090637 to access the supplemental
material; contact editing@geosociety.org with any
questions.
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Figure 2. Interpretation
of the thermal structure
of the cratonic litho-
spheric mantle based on
petrological and seismic

datasets. (A) Plot of the
temperature-depth profile
from the seismological
results of Priestley et al.
(2024) beneath the Wajra-
karur Kimberlite Field. (B)
Plot of the equilibration
pressure and tempera-
ture (P-T) for mantle
xenoliths/xenocrysts
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results from multiple locations surrounding each
kimberlite pipe, and the feature that the conduc-
tive section of many temperature-depth profiles
shows a range of gradients, means that we take
the conservative approach of examining the full
spectrum of possible LAB depths and reporting
that range (Supplemental Material Table S1; cf.
Sarkar et al., 2025). An example of the seismo-
logically determined temperature-depth profile
and LAB depth for the Wajrakarur Kimberlite
Field is shown on Figure 2. Equivalent results
for other locations are reported in Supplemental
Material item S2. For all locations, we report an
average LAB depth and standard deviation (10)
based on our intersection method. Our petro-
logical and seismic approaches do not explic-
itly model a thermal boundary layer at the base
of the lithosphere. This exclusion ensures con-
sistency between both methods, allowing for a
more reliable comparison of LAB depth esti-
mates. The same conclusions would be obtained
if an equivalent thermal boundary layer was
included in both methods.

RESULTS AND DISCUSSION

Figures 3A-3D show our petrologically esti-
mated LAB depths plotted against the time of
eruption of each sample set. These plots were
made using a constant mantle 7, of 1315 °C.
Equivalent plots using a change in mantle 7,
through time of 50 °C b.y.~! (Sudholz and Cop-
ley, 2025) are reported in Supplemental Mate-
rial item S2. The largest lithosphere thickness
estimates are from cratonic interiors, notably

the Siberian Craton and North Australian Cra-
ton (Fig. 1). In contrast, thinner lithosphere is
observed in mobile belts and inliers along the
margins of cratons, such as the Adelaide Fold
Belt (Monk Hill) and Arunta Inlier (Webb). Gra-
dients in the plots of LAB depth against time
could result from lateral variations in lithosphere
thickness between sites or temporal variations
between eruptions due to growth or removal of
lithospheric mantle. In some locations, closely
spaced sites experienced eruptions over a pro-
tracted period of time (e.g., over 0.5-1.5 b.y. in
the Kimberley and Yilgarn Cratons on Fig. 3B)
with no resolvable changes through time in
LAB depth. In contrast, some locations (e.g.,
the Kaapvaal on Fig. 3A and Siberia on Fig. 3D)
show larger variations in LAB depth for roughly
coeval eruptions, implying lateral variations in
LAB depth. This inference is consistent with
the present-day variations in these regions seen
on the lithosphere thickness map of Priestley
et al. (2024). However, we note that the lateral
resolution of the surface wave tomography is
~200 km, so short-wavelength variations are
invisible to that method.

Figure 3E shows the comparison between
all of our estimated paleo-LAB depths and the
present-day estimates for the same locations
from the seismological method. A negative value
indicates lithospheric thinning since the time of
eruption, while positive values indicate thicken-
ing. Regardless of age, for the majority of the
locations, the xenolith- and seismology-based
estimates of LAB depth are within 50 km of each
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able near the base of the
lithosphere, beneath the
effects of crustal contami-
nation in the estimated
seismic velocities.

other. The notable exception is the North China
Craton (purple symbols), which shows evidence
of significant thinning of the lithosphere since the
early Phanerozoic (Fig. 3E). With the exception
of North China, the overall similarity in xenolith-
and seismology-based estimates of lithosphere
thickness implies that over the ~2 b.y. time scale
of our dataset, there are no major (i.e., >75 km)
and globally systematic changes in lithosphere
thickness through time. In other words, there
is no significant evidence supporting secular
thinning or growth of the CLM on a regional or
global scale. The results shown in Supplemental
Material item S2, calculated using the maximum
change in mantle 7, through time that is compat-
ible with the xenolith dataset (50 °C b.y.”'; Sud-
holz and Copley, 2025) shows that these patterns
hold true even in that case.

Our findings challenge the notion that cra-
tons were significantly thicker in the past, such
as recent suggestions that cratons may have
reached thicknesses >300 km during the Pro-
terozoic and Archean (Hoare et al., 2022; Kam-
ber and Tomlinson, 2019). Our results also chal-
lenge the conclusion of Sarkar et al. (2025), who
propose widespread craton erosion over the past
200 m.y. The longevity of cratonic lithosphere as
implied from our Figure 3 results is consistent
with Re-Os isotopic data for cratonic perido-
tites, which show that cratons are generally sta-
ble over >2 b.y. time scales (i.e., Pearson et al.,
1995) and that their destruction and modifica-
tion is restricted to exceptional circumstances
(Carlson et al., 2004). These Re-Os data also
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Figure 3. Global trends in cratonic lithospheric mantle thickness from paleogeotherm modeling and seismic tomography. (A-D) Change in
paleo-LAB (lithosphere-asthenosphere boundary) depth through time for the locations on Figure 1. (E) Comparison between the present-day
LAB depth and paleo-LAB depth for our global dataset. The values for ALAB were calculated as present-day LAB minus paleo-LAB (km). The
standard deviation values were calculated as the sum of the squares of the petrological and seismic errors on the LAB estimates. Pink sym-
bols are data for the Wyoming Craton and adjacent mobile belts (i.e., Cheyenne Belt). Purple symbols are data for China.

support our rejection of the possibility of a time-
varying LAB depth that repeatedly returns to the
same value for sampling by sporadically erupted
xenoliths, and to be imaged seismologically at
the present day. Such a situation is probabilis-
tically highly unlikely and would involve reset
Re-Os ages during regular episodes of CLM
thinning and growth. Superimposed upon the
overall pattern of limited changes in LAB depth
are variations of up to 50 km between the two
methods of estimating LAB depth. The two pos-
sible interpretations of these differences are (1)
changes in LAB depth through time, and (2)
short-wavelength variations in LAB depth that
are sampled by the xenoliths but not the seis-
mological method.

We attribute the long-term stability of the
CLM to the relatively constant mantle 7, since
the Proterozoic (Sudholz and Copley, 2025), as
well as the highly depleted composition of the
CLM beneath most cratons. The limited changes
in mantle 7, through time means that the ther-
mal structure of cratons has remained mostly
unchanged. The addition of volatiles into the
base of the CLM may contribute toward rheo-

logical weakening and to lowering the melting
temperature (Foley, 2008). However, the volume
of these melts is likely too small to contribute to
large changes in lithospheric density structure
through time, as implied by the observation that
low-volume melts make up an extremely small
portion of the melts derived from cratons, both
spatially and temporally (Tappe et al., 2018).
The Wyoming and North China Cratons are
commonly thought to have experienced sig-
nificant shallowing of the LAB through time
(Wu et al., 2019; Dave and Li, 2016). The
North China Craton (purple symbols on Fig. 3)
is the only location in our dataset with a large
(>100 km) difference between the present-day
and paleo-LAB depth. The information from
the Wyoming Craton and adjacent mobile belts
(i.e., Cheyenne Belt; pink symbols) is more
ambiguous and potentially implies thinning of
50-75 km since the Devonian, although this
value is small enough to be poorly constrained.
Both regions have spent large amounts of time
(>100 m.y.) immediately overriding subducting
slabs (Pacific and Farallon plates), and both are
in regions experiencing current or geologically

recent extension. These findings imply that the
conditions necessary to destroy the geological
longevity of thick cratonic roots are (1) hun-
dreds of millions of years of volatile input in
a supra-subduction setting, and (2) subsequent
extensional stresses that are able to stretch, and
thin, the volatile-rich and weaker lithosphere.
However, in the case of these exceptional cir-
cumstances, whether the necessary weakening
to allow extension occurs in the crust or mantle
portions of the lithosphere, or both, is depen-
dent upon lithosphere rheology (Burov, 2011;
Jackson et al., 2021).

CONCLUSION

Our results indicate that the thickness of the
CLM was not significantly greater during the Pre-
cambrian. Comparison between paleo-LAB esti-
mates with present-day observations shows that
there have been no secular trends in lithosphere
growth and/or destruction since at least the mid-
Proterozoic. The rare exceptions to this pattern
require the geologically noteworthy history of
long periods of subduction-induced volatile input
followed by significant extensional stressing.
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